论文标题
多CCD点扩展功能建模
Multi-CCD Point Spread Function Modelling
论文作者
论文摘要
Galaxy成像调查观察到受仪器点扩散功能(PSF)影响的大量对象。尤其是弱透镜任务旨在测量星系的形状,而PSF效应代表了必须适当处理的系统错误的重要来源。这需要在星系位置的建模以及PSF的估计中具有很高的精度。有时被称为非参数PSF估计,本文的目的是在星系位置估算PSF,从一组分布在焦平面上的嘈杂的星形图像观测值开始。为了实现这一目标,我们需要我们的模型首先,精确地捕获了视野(FOV)上的PSF字段变化,然后在所选位置恢复PSF。本文提出了一种新方法,即创建的MCCD(多CCD PSF建模),该方法同时在所有仪器的焦平面上创建了PSF场模型。这允许通过使用两个互补模型来捕获全局和本地PSF功能,这些互补模型可以执行不同的空间约束。大多数现有的非参数模型每个电荷耦合设备(CCD)构建了一个模型,这可能会导致捕获全局椭圆形模式的困难。我们首先在现实的模拟数据集上测试我们的方法,该数据集将其与两种最先进的PSF建模方法(PSFEX和RCA)进行了比较。我们用我们提出的方法胜过他们两个。然后,我们将使用CFHT(加拿大法国成像调查)的真实数据与PSFEX进行对比,该数据使用CFHT(加拿大 - 弗朗西·霍瓦伊望远镜)。我们表明,我们的PSF模型较不嘈杂,并且相对于PSFEX,在像素根平方误差(RMSE)上获得了22%的增长。我们介绍并共享一种新的PSF建模算法的代码,该算法对所有焦点平面上的PSF字段进行建模,该焦点足以处理真实数据。
Galaxy imaging surveys observe a vast number of objects that are affected by the instrument's Point Spread Function (PSF). Weak lensing missions, in particular, aim at measuring the shape of galaxies, and PSF effects represent an important source of systematic errors which must be handled appropriately. This demands a high accuracy in the modelling as well as the estimation of the PSF at galaxy positions. Sometimes referred to as non-parametric PSF estimation, the goal of this paper is to estimate a PSF at galaxy positions, starting from a set of noisy star image observations distributed over the focal plane. To accomplish this, we need our model to first of all, precisely capture the PSF field variations over the Field of View (FoV), and then to recover the PSF at the selected positions. This paper proposes a new method, coined MCCD (Multi-CCD PSF modelling), that creates, simultaneously, a PSF field model over all of the instrument's focal plane. This allows to capture global as well as local PSF features through the use of two complementary models which enforce different spatial constraints. Most existing non-parametric models build one model per Charge Coupled Device (CCD), which can lead to difficulties in capturing global ellipticity patterns. We first test our method on a realistic simulated dataset comparing it with two state-of-the-art PSF modelling methods (PSFEx and RCA). We outperform both of them with our proposed method. Then we contrast our approach with PSFEx on real data from CFIS (Canada France Imaging Survey) that uses the CFHT (Canada-France-Hawaii Telescope). We show that our PSF model is less noisy and achieves a 22% gain on pixel Root Mean Squared Error (RMSE) with respect to PSFEx. We present, and share the code of, a new PSF modelling algorithm that models the PSF field on all the focal plane that is mature enough to handle real data.