论文标题

屏幕收集:屏幕读取在利用电磁侧渠道的移动设备上的暴风雨攻击

Screen Gleaning: A Screen Reading TEMPEST Attack on Mobile Devices Exploiting an Electromagnetic Side Channel

论文作者

Liu, Zhuoran, Samwel, Niels, Weissbart, Léo, Zhao, Zhengyu, Lauret, Dirk, Batina, Lejla, Larson, Martha

论文摘要

我们介绍了屏幕Gleaning,这是一种暴风雨攻击,其中读取移动设备的屏幕无视觉线,从而揭示了手机屏幕上显示的敏感信息。屏幕收集攻击使用天线和软件定义的无线电(SDR)拾取设备发送到屏幕以显示的电磁信号,例如,带有安全代码的消息。这种特殊设备使其可以作为灰度图像重新创建信号,我们将其称为emage。在这里,我们证明它可用于读取安全代码。屏幕收集的攻击是具有挑战性的,因为人类观看者通常不可能直接解释弹出声。我们表明,可以通过机器学习,特别是深度学习分类器来应对这一挑战。随着SDR和深度学习继续迅速发展,屏幕收集将变得越来越严重。在本文中,我们演示了安全代码攻击,并提出了一个测试台,该测试台提供了标准设置,可以使用不同的攻击者模型对屏幕收集进行测试。最后,我们分析了屏幕收集攻击者模型的尺寸,并讨论了可能解决这些模型的可能对策。

We introduce screen gleaning, a TEMPEST attack in which the screen of a mobile device is read without a visual line of sight, revealing sensitive information displayed on the phone screen. The screen gleaning attack uses an antenna and a software-defined radio (SDR) to pick up the electromagnetic signal that the device sends to the screen to display, e.g., a message with a security code. This special equipment makes it possible to recreate the signal as a gray-scale image, which we refer to as an emage. Here, we show that it can be used to read a security code. The screen gleaning attack is challenging because it is often impossible for a human viewer to interpret the emage directly. We show that this challenge can be addressed with machine learning, specifically, a deep learning classifier. Screen gleaning will become increasingly serious as SDRs and deep learning continue to rapidly advance. In this paper, we demonstrate the security code attack and we propose a testbed that provides a standard setup in which screen gleaning could be tested with different attacker models. Finally, we analyze the dimensions of screen gleaning attacker models and discuss possible countermeasures with the potential to address them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源