论文标题
上下文子空间变分量子本质量
Contextual Subspace Variational Quantum Eigensolver
论文作者
论文摘要
我们描述了上下文的子空间变分量子本质量(CS-VQE),这是一种杂交量子古典算法,用于近似于哈密顿量的基态能量。获得基态能量的近似值作为两个贡献的总和。第一个贡献来自对哈密顿式的非秘密近似,并且是经典计算的。第二个贡献是通过使用变分量子本素(VQE)技术来计算量子处理器上下文校正的。通常,与原始问题的VQE计算相比,上下文校正的VQE计算使用的量子和测量少。改变用于上下文校正的量子位数量可以调整近似的质量。我们为小分子模拟CS-VQE,并发现达到化学精度所需的量子数可以降低超过两个。不使用其他测量减少方案,可以减少计算上下文校正所需的条款数量。这表明CS-VQE是嘈杂的中间规模量子设备的特征值计算的有前途的方法。
We describe the contextual subspace variational quantum eigensolver (CS-VQE), a hybrid quantum-classical algorithm for approximating the ground state energy of a Hamiltonian. The approximation to the ground state energy is obtained as the sum of two contributions. The first contribution comes from a noncontextual approximation to the Hamiltonian, and is computed classically. The second contribution is obtained by using the variational quantum eigensolver (VQE) technique to compute a contextual correction on a quantum processor. In general the VQE computation of the contextual correction uses fewer qubits and measurements than the VQE computation of the original problem. Varying the number of qubits used for the contextual correction adjusts the quality of the approximation. We simulate CS-VQE on tapered Hamiltonians for small molecules, and find that the number of qubits required to reach chemical accuracy can be reduced by more than a factor of two. The number of terms required to compute the contextual correction can be reduced by more than a factor of ten, without the use of other measurement reduction schemes. This indicates that CS-VQE is a promising approach for eigenvalue computations on noisy intermediate-scale quantum devices.