论文标题
$α'$ - 完整的宇宙学中的新的非扰动de Sitter真空吸尘器
New non-perturbative de Sitter vacua in $α'$-complete cosmology
论文作者
论文摘要
由Hohm和Zwiebach开发的$α'$ - 完整的宇宙学对$ {\ rm o}(d,d; {\ Mathbb r})$不变理论涉及公制,$ b $ field和Dilaton,仅取决于时间,以依赖于$α'$。这些理论中的某些理论具有非扰动的各向同性DE Sitter Vacua在字符串框架中,由$ {\ rm o}的无限数量的高衍生品(d,d,d; {\ mathbb r})$多重做生成。为了扩展各向同性ANSATZ,我们在字符串和爱因斯坦框架中构建了稳定且不稳定的非扰动DE Sitter解决方案。运动方程式允许新解决方案,包括各向异性$ d+1 $维度指标和非变化$ b $ field。特别是,我们发现ds $ _ {n+1} \ times t^{d-n} $几何形状具有恒定dilaton的几何形状,并且在空间尺寸中具有有界比例因子的指标,具有非平凡的$ b $ field。我们讨论解决方案的稳定性和非扰动特征以及可能的应用。
The $α'$-complete cosmology developed by Hohm and Zwiebach classifies the ${\rm O}(d,d;{\mathbb R})$ invariant theories involving metric, $b$-field and dilaton that only depend on time, to all orders in $α'$. Some of these theories feature non-perturbative isotropic de Sitter vacua in the string frame, generated by the infinite number of higher-derivatives of ${\rm O}(d,d;{\mathbb R})$ multiplets. Extending the isotropic ansatz, we construct stable and unstable non-perturbative de Sitter solutions in the string and Einstein frames. The generalized equations of motion admit new solutions, including anisotropic $d+1$-dimensional metrics and non-vanishing $b$-field. In particular, we find dS$_{n+1}\times T^{d-n}$ geometries with constant dilaton, and also metrics with bounded scale factors in the spatial dimensions with non-trivial $b$-field. We discuss the stability and non-perturbative character of the solutions, as well as possible applications.