论文标题

确定$ 2 $级密度的最佳测试功能

Determining optimal test functions for $2$-level densities

论文作者

Bołdyriew, Elżbieta, Chen, Fangu, VI, Charles Devlin, Miller, Steven J., Zhao, Jason

论文摘要

卡兹(Katz)和萨尔纳克(Sarnak)猜想了$ n $级别的密度统计数据之间的对应关系,来自$ l $ functions的家族,以及随机矩阵综合体的特征值。在许多情况下,平滑测试函数的总和有限地支持其傅立叶变换,因为家族中的缩放零会收敛到测试功能的组成部分,而密度$ w_ {n,g} $,取决于家族的对称$ g $(单位,符号,符号,符号或正脉)。这种整体范围是$ l $ functions的相应家族中心点消失的平均顺序。我们可以通过找到更好的测试功能来最大程度地减少整体不可或缺的方法来获得对此消失的更好估计。当$ n = 2 $时,我们追求这个问题,最小化\ [\ frac {1} {φ(0,0,0,0)} \ int _ {{\ Mathbb r}^2} \ infty)$,具有紧凑的傅立叶变换。我们研究了此优化问题的限制版本,认为我们的测试功能对某些固定的可接受$ψ(y)$和$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ supseteq [-1,1] $的测试功能采用$ ϕ(x)ψ(y)$的形式。扩大了$ 1 $级别的情况的结果,即iWaniec,Luo和Sarnak的功能分析论证以及Freeman和Miller引入的微分方程方法,我们明确地为适当选择的固定固定测试功能$ψ$明确求解了最佳$ ϕ $。该解决方案允许我们推断出$ \ Mathrm {so}(\ Mathrm {fev})$,在$ \ Mathrm {so}的情况下,在$ \ Mathrm {so}的情况下,$ 1 $或$ 3 $在$ $ \ MATHRM {so so}(so so}(\ mathrm {odd})$ 2 $ 2 $ { $ \ mathrm {sp} $和$ \ mathrm {u} $;我们的估计值是对$ 1 $级别密度获得的最著名估计值的显着加强。最后,我们通过讨论迭代方法对估计的进一步改进来结束。

Katz and Sarnak conjectured a correspondence between the $n$-level density statistics of zeros from families of $L$-functions with eigenvalues from random matrix ensembles. In many cases the sums of smooth test functions, whose Fourier transforms are finitely supported, over scaled zeros in a family converge to an integral of the test function against a density $W_{n, G}$ depending on the symmetry $G$ of the family (unitary, symplectic or orthogonal). This integral bounds the average order of vanishing at the central point of the corresponding family of $L$-functions. We can obtain better estimates on this vanishing by finding better test functions to minimize the integral. We pursue this problem when $n=2$, minimizing \[ \frac{1}{Φ(0, 0)} \int_{{\mathbb R}^2} W_{2,G} (x, y) Φ(x, y) dx dy \] over test functions $Φ\colon {\mathbb R}^2 \to [0, \infty)$ with compactly supported Fourier transform. We study a restricted version of this optimization problem, imposing that our test functions take the form $ϕ(x) ψ(y)$ for some fixed admissible $ψ(y)$ and $\mathrm{supp}({\hat ϕ}) \subseteq [-1, 1]$. Extending results from the $1$-level case, namely the functional analytic arguments of Iwaniec, Luo and Sarnak and the differential equations method introduced by Freeman and Miller, we explicitly solve for the optimal $ϕ$ for appropriately chosen fixed test function $ψ$. The solution allows us to deduce strong estimates for the proportion of newforms of rank $0$ or $2$ in the case of $\mathrm{SO}(\mathrm{even})$, rank $1$ or $3$ in the case of $\mathrm{SO}(\mathrm{odd})$, and rank at most $2$ for $\mathrm{O}$, $\mathrm{Sp}$, and $\mathrm{U}$; our estimates are a significant strengthening of the best known estimates obtained with the $1$-level density. We conclude by discussing further improvements on estimates by the method of iteration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源