论文标题

基于局部区分性的真实量子非局部性而没有纠缠

Local distinguishability based genuinely quantum nonlocality without entanglement

论文作者

Li, Mao-Sheng, Wang, Yan-Ling, Shi, Fei, Yung, Man-Hong

论文摘要

最近,Halder \ emph {et al。} [phys。莱特牧师。 \ textbf {122},040403(2019)]提出了一个概念,没有纠缠而没有纠缠的强度:在多部分量子系统中的正交完全产物状态,对于每个子系统的每两十字架都无法可选)。由于问题的困难,大多数结果仅限于三方系统。在这里,我们考虑一种较弱的非局部性形式,称为局部区分性的真实性非局部性。如果一组正交的多部分量子状态被认为是真正的非本地,那么如果该量子在局部对于每个子系统的每两十字架都无法区分。在这项工作中,我们倾向于研究后一种非局部性形式。首先,我们在两部分系统中提供一组优雅的产品状态,这些状态在本地无法区分。之后,基于一个简单的观察,我们提出了一种通用方法,可以通过使用那些真正非局部但较少的当事人的集合来构建多方乘积状态的真正非本地。结果,我们获得了所有可能的多部分量子系统存在真正的非本地产品状态集。

Recently, Halder \emph{et al.} [Phys. Rev. Lett. \textbf{122}, 040403 (2019)] proposed the concept strong nonlocality without entanglement: an orthogonal set of fully product states in multipartite quantum systems that is locally irreducible for every bipartition of the subsystems. As the difficulty of the problem, most of the results are restricted to tripartite systems. Here we consider a weaker form of nonlocality called local distinguishability based genuine nonlocality. A set of orthogonal multipartite quantum states is said to be genuinely nonlocal if it is locally indistinguishable for every bipartition of the subsystems. In this work, we tend to study the latter form of nonlocality. First, we present an elegant set of product states in bipartite systems that is locally indistinguishable. After that, based on a simple observation, we present a general method to construct genuinely nonlocal sets of multipartite product states by using those sets that are genuinely nonlocal but with less parties. As a consequence, we obtain that genuinely nonlocal sets of fully product states exist for all possible multipartite quantum systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源