论文标题
张量三角仪类别的扭转模型:一步案例
Torsion models for tensor-triangulated categories: the one-step case
论文作者
论文摘要
给定合适的稳定单体模型类别$ \ MATHSCR {C} $和其Balmer频谱的专业封闭子集$ V $,可以生产一个将泰特广场用于分解成$ V $的零件的泰特广场,并且在$ v $上支撑的零件上支持$ v^c $ splin,tate tate对象。使用此方法可以表明,$ \ Mathscr {C} $是quillen等同于根据本地扭转对象的数据构建的模型,并且剪接数据位于相当丰富的类别中。作为一种应用,我们促进了从[18]到quillen等效性的有理圆等量光谱的同型类别的扭转模型。此外,对一步案例的仔细分析强调了我们将在未来工作中返回的一般扭转模型所需的重要功能。
Given a suitable stable monoidal model category $\mathscr{C}$ and a specialization closed subset $V$ of its Balmer spectrum one can produce a Tate square for decomposing objects into the part supported over $V$ and the part supported over $V^c$ spliced with the Tate object. Using this one can show that $\mathscr{C}$ is Quillen equivalent to a model built from the data of local torsion objects, and the splicing data lies in a rather rich category. As an application, we promote the torsion model for the homotopy category of rational circle-equivariant spectra from [18] to a Quillen equivalence. In addition, a close analysis of the one step case highlights important features needed for general torsion models which we will return to in future work.