论文标题
从紧凑的分子散射引力和旋转的巨大状态
Scattering of Gravitons and Spinning Massive States from Compact Numerators
论文作者
论文摘要
在散射方程的上下文中,我们提供了一种新的有效的图形工具,用于计算协方差$ d $二维树级$ n $ n $ - 点振幅,并使用紧凑的指数计数器与成对旋转的巨型粒子成对。我们讨论了该框架如何允许为整数旋转开发的振幅的复发关系的非整合旋转扩展。我们的结果促进了正在进行的计划,用于在经典的一般相对论中产生可观察到的计划,从壳树幅度通过Kawai-Lewellen-Tye关系和广义单位性。
We provide a new efficient diagrammatic tool, in the context of the scattering equations, for computation of covariant $D$-dimensional tree-level $n$-point amplitudes with pairs of spinning massive particles using compact exponential numerators. We discuss how this framework allows non-integer spin extensions of recurrence relations for amplitudes developed for integer spin. Our results facilitate the on-going program for generating observables in classical general relativity from on-shell tree amplitudes through the Kawai-Lewellen-Tye relations and generalized unitarity.