论文标题
深入学习宇宙结构形成的见解
Deep learning insights into cosmological structure formation
论文作者
论文摘要
早期宇宙中存在的线性初始条件的演变可以使用宇宙学模拟计算到深色物质的扩展光环中。但是,对这个复杂过程的理论理解仍然难以捉摸。特别是,各向异性信息在最初条件中建立最终的暗物质光环质量的作用仍然是一个长期的难题。在这里,我们建立了一个深度学习框架来研究这个问题。我们训练一个三维卷积神经网络(CNN),从初始条件中预测暗物质光环的质量,并完全量化最终光晕质量的初始密度字段的各向同性和各向异性方面的信息量。我们发现,各向异性增加了一个小的,尽管在统计学上具有重要的信息,而在密度场的球形平均值中包含的信息涉及最终的光晕质量。但是,最终质量预测中的总体散射不会随着这些附加信息的质量变化,仅从0.9 dex降低到0.7 dex。鉴于如此小的改进,我们的结果表明,初始密度场的各向同性方面基本上使有关最终光晕质量的相关信息饱和。因此,与其搜索直接在初始条件各向异性中直接编码的信息,不如说明准确,快速的光晕质量预测的更有希望的途径是添加基于近似动态信息的信息,例如关于扰动理论。更广泛地说,我们的结果表明,深度学习框架可以为提取宇宙结构形成的物理见解提供强大的工具。
The evolution of linear initial conditions present in the early universe into extended halos of dark matter at late times can be computed using cosmological simulations. However, a theoretical understanding of this complex process remains elusive; in particular, the role of anisotropic information in the initial conditions in establishing the final mass of dark matter halos remains a long-standing puzzle. Here, we build a deep learning framework to investigate this question. We train a three-dimensional convolutional neural network (CNN) to predict the mass of dark matter halos from the initial conditions, and quantify in full generality the amounts of information in the isotropic and anisotropic aspects of the initial density field about final halo masses. We find that anisotropies add a small, albeit statistically significant amount of information over that contained within spherical averages of the density field about final halo mass. However, the overall scatter in the final mass predictions does not change qualitatively with this additional information, only decreasing from 0.9 dex to 0.7 dex. Given such a small improvement, our results demonstrate that isotropic aspects of the initial density field essentially saturate the relevant information about final halo mass. Therefore, instead of searching for information directly encoded in initial conditions anisotropies, a more promising route to accurate, fast halo mass predictions is to add approximate dynamical information based e.g. on perturbation theory. More broadly, our results indicate that deep learning frameworks can provide a powerful tool for extracting physical insight into cosmological structure formation.