论文标题

学习控制障碍功能具有高度相对程度的安全 - 关键控制

Learning Control Barrier Functions with High Relative Degree for Safety-Critical Control

论文作者

Wang, Chuanzheng, Li, Yinan, Meng, Yiming, Smith, Stephen L., Liu, Jun

论文摘要

控制障碍功能在解决安全保证的控制问题方面取得了巨大成功。这些方法通常通过解决在线二次编程问题来找到下一个安全控制输入。但是,模型不确定性是合成控制器的巨大挑战。这可能会导致不安全的控制作用产生,从而产生严重的后果。在本文中,我们开发了一个学习框架来处理系统不确定性。我们的方法主要集中于学习控制屏障功能的动力学,尤其是对于系统的高度相对程度。我们表明,对于每个顺序,可以将控制屏障函数的时间导数分离为标称控制屏障函数的时间导数和余数。这意味着我们可以使用神经网络来学习其余部分,以便我们可以近似实际控制屏障功能的动态。我们通过模拟显示我们的方法可以使用差分驱动机器人模型在参数不确定性下生成安全轨迹。

Control barrier functions have shown great success in addressing control problems with safety guarantees. These methods usually find the next safe control input by solving an online quadratic programming problem. However, model uncertainty is a big challenge in synthesizing controllers. This may lead to the generation of unsafe control actions, resulting in severe consequences. In this paper, we develop a learning framework to deal with system uncertainty. Our method mainly focuses on learning the dynamics of the control barrier function, especially for high relative degree with respect to a system. We show that for each order, the time derivative of the control barrier function can be separated into the time derivative of the nominal control barrier function and a remainder. This implies that we can use a neural network to learn the remainder so that we can approximate the dynamics of the real control barrier function. We show by simulation that our method can generate safe trajectories under parametric uncertainty using a differential drive robot model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源