论文标题
涉及$ n $的表示形式的身份作为$ r $三角形的总和
An identity involving number of representations of $n$ as a sum of $r$ triangular numbers
论文作者
论文摘要
令$ \ sum_ {d | n} $表示正面整数$ n $的除数的总和,而$ t_ {r}(n)$表示$ n $的表示数为$ r $ $ $ $三角形的数字。然后,我们证明$$ \ sum_ {d | n} \ frac {1+2 \,( - 1)^{d}} {d} {d} = \ sum _ {r = 1}^{n} \ frac {( - 1)使用Ono,Robbins和Wahl的结果T_ {R}(n)$$。
Let $\sum_{d|n}$ denote sum over divisors of a positive integer $n$, and $t_{r}(n)$ denote the number of representations of $n$ as a sum of $r$ triangular numbers. Then we prove that $$ \sum_{d|n}\frac{1+2\,(-1)^{d}}{d}=\sum_{r=1}^{n}\frac{(-1)^{r}}{r}\, \binom{n}{r}\, t_{r}(n) $$ using a result of Ono, Robbins and Wahl.