论文标题

两变量振动,分解系统和$ \ infty $ - 跨度类别

Two-variable fibrations, factorisation systems and $\infty$-categories of spans

论文作者

Haugseng, Rune, Hebestreit, Fabian, Linskens, Sil, Nuiten, Joost

论文摘要

我们证明了$ \ infty $ - 在Barwick足够三倍的一般性中的跨度跨度的通用属性,明确描述了与SPAN函数相对应的Cocartesian纤维化,并表明后者限制了对正交相等的自我等效性,而我们介绍了这一目的。 As applications of the machinery we develop we give a quick proof of Barwick's unfurling theorem, show that an orthogonal factorisation system arises from a cartesian fibration if and only if it forms an adequate triple (generalising work of Lanari), extend the description of dual (co)cartesian fibrations by Barwick, Glasman and Nardin to two-variable fibrations, explicitly describe parametrised伴随(延长Torii的工作),确定$(\ infty,2)$类别的映射类别函数的矫正式函数(基于AbellánGarcia和Stern的工作,正式确定了$ \ fatty $ \ infty $ \ -categrie的身份函数的毫无疑问的函数(iffty $ \ -categrories),该指数(in Infty $ category)的指数(catemories)(categories in Infty $ \ fate)(calte)(infty)$ \ \ categrie)推断Yoneda嵌入的某种自然属性(回答Clausen的问题)。

We prove a universal property for $\infty$-categories of spans in the generality of Barwick's adequate triples, explicitly describe the cocartesian fibration corresponding to the span functor, and show that the latter restricts to a self-equivalence on the class of orthogonal adequate triples, which we introduce for this purpose. As applications of the machinery we develop we give a quick proof of Barwick's unfurling theorem, show that an orthogonal factorisation system arises from a cartesian fibration if and only if it forms an adequate triple (generalising work of Lanari), extend the description of dual (co)cartesian fibrations by Barwick, Glasman and Nardin to two-variable fibrations, explicitly describe parametrised adjoints (extending work of Torii), identify the orthofibration classifying the mapping category functor of an $(\infty,2)$-category (building on work of Abellán Garcia and Stern), formally identify the unstraightenings of the identity functor on the $\infty$-category of $\infty$-categories with the (op)lax under-categories of a point, and deduce a certain naturality property of the Yoneda embedding (answering a question of Clausen).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源