论文标题

欧几里得瓷砖中的紧急准粒子

Emergent quasiparticles in Euclidean tilings

论文作者

de Lima, F. Crasto, Fazzio, A.

论文摘要

材料的几何结构是其性质的基本组成部分。石墨烯的蜂窝几何形状负责其狄拉克锥的产生,而Kagome和Lieb lattice则容纳了平坦的乐队和Pseudospin-1 Dirac分散体。对于几个2D系统,这些功能似乎是特别的,而不是常见的发生。鉴于结构与性质之间的相关性,探索新几何形状可以导致未开发的状态和现象。开普勒是数学瓷砖理论的先驱,描述了在其书中{\ it hormonices mundi}中用几何形式提交欧几里得平面的方法。在这封信中,我们表征了$ 1255 $ lattices,由欧几里得飞机的K-均匀瓷砖组成,其内在属性揭开了亮相 - 这类布置的瓷砖呈现高降级点,异国情调的准粒子和平坦的乐队。在这里,我们向新2D系统的实验解释和预测提供了帮助。

Material's geometrical structure is a fundamental part of their properties. The honeycomb geometry of graphene is responsible for the arising of its Dirac cone, while the kagome and Lieb lattice hosts flat bands and pseudospin-1 Dirac dispersion. These features seem to be particular for few 2D systems rather than a common occurrence. Given this correlation between structure and properties, exploring new geometries can lead to unexplored states and phenomena. Kepler is the pioneer of the mathematical tiling theory, describing ways of filing the euclidean plane with geometrical forms in its book {\it Harmonices Mundi}. In this letter, we characterize $1255$ lattices composed of the euclidean plane's k-uniform tiling, with its intrinsic properties unveiled - this class of arranged tiles present high-degeneracy points, exotic quasiparticles, and flat bands as a common feature. Here, we present aid for experimental interpretation and prediction of new 2D systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源