论文标题

duistermaat-Heckman公式具有应用于圈子动作的应用,庞加莱$ q $ - 多个词的扭曲epolivariant k理论

The Duistermaat-Heckman formula with application to circle actions and Poincaré $q$-polynomials in twisted equivariant K-theory

论文作者

Bytsenko, A. A., Chaichian, M., Gonçalves, A. E.

论文摘要

在本文中,我们推论了Duistermaat-Heckman公式的证明草图,并研究了如何将已知的Duistermaat-Heckman结果专门针对轨道空间上的合成结构。在层次中的本地化定理不仅为我们提供了精美的数学公式,并在算法计算中刺激了成就,而且还促进了理论和数学物理学的进步。我们介绍了椭圆形属和特征性的$ q $ - 圆圈动作和扭曲的Equivariant K理论,并分别分析了$ n $符号的对称组。我们表明,庞加莱$ Q $ - 多个月式的录音介绍了Patterson-Selberg(或Ruelle-type)频谱功能。

In this paper we deduce the sketch of proof of the Duistermaat-Heckman formula and investigate how the known Duistermaat-Heckman result could be specialized to the symplectic structure on the orbit space. The theorems of localization in equivariant cohomology not only provide us with beautiful mathematical formulas and stimulate achievements in algorithmic computations, but also promote progress in theoretical and mathematical physics. We present the elliptic genera and the characteristic $q$-series for the circle actions and twisted equivariant K-theory, with the case of the symmetric group of $n$ symbols separately analyzed. We show that the Poincaré $q$-polynomials admit presentation in terms of the Patterson-Selberg (or the Ruelle-type) spectral functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源