论文标题
在与混合多项式相关的3个球体中的实际代数链接上
On real algebraic links in the 3-sphere associated with mixed polynomials
论文作者
论文摘要
在本文中,我们构建了新的混合奇点类别,以3美元的价格实现真实代数链接的实现。实际代数链接的分类和特征仍然是打开的。这些新的混合奇异性类别可能有助于阐明Benedetti-Shiota的猜想,该猜想表明,$ 3 $ -Sphere上的任何纤维链路都是真正的代数链接。
In this paper we construct new classes of mixed singularities that provide realizations of real algebraic links in the $3$-sphere. Classifications and characterizations of real algebraic links are still open. These new classes of mixed singularities may help to shed light on the Benedetti-Shiota conjecture, which state that any fibered link on the $3$-sphere is a real algebraic link.