论文标题
多项式混合,以改变单一流动的时间变化
Polynomial mixing for time-changes of unipotent flows
论文作者
论文摘要
令$ g $为有限中心的连接的半谎言组,让$ m =γ\ backslash g $成为紧凑的同质歧管。在光谱差距假设下,我们表明$ m $上任何一项单位流的平滑时间变化具有相关性多项式衰减。我们的结果也适用于$ m $是有限量的情况,在时间变化的发电机上的一些其他假设下,非压缩商。这概括了Forni和Ulcigrai(JMD,2012年)的结果,以使紧凑型表面上的烟循环流平滑时间变化。
Let $G$ be a connected semisimple Lie group with finite centre, and let $M= Γ\backslash G$ be a compact homogeneous manifold. Under a spectral gap assumption, we show that smooth time-changes of any unipotent flow on $M$ have polynomial decay of correlations. Our result applies also in the case where $M$ is a finite volume, non-compact quotient under some additional assumptions on the generator of the time-change. This generalizes a result by Forni and Ulcigrai (JMD, 2012) for smooth time-changes of horocycle flows on compact surfaces.