论文标题
Cocoi:接触感知的在线上下文推断可推广的非平面推动
COCOI: Contact-aware Online Context Inference for Generalizable Non-planar Pushing
论文作者
论文摘要
由于很难理解复杂的接触物理学,因此一般的接触良好的操纵问题是机器人技术的长期挑战。深度强化学习(RL)在解决机器人操纵任务方面表现出了巨大的潜力。但是,现有的RL策略对具有不同动态属性的环境的适应性有限,这对于解决许多接触式操纵任务至关重要。在这项工作中,我们提出了联系感知的在线上下文推断(Cocoi),这是一种深入的RL方法,该方法使用触点丰富的交互在线编码动态属性的上下文嵌入。我们根据一项新颖且具有挑战性的非平面推动任务来研究这种方法,该任务使用了单眼相机图像和手腕力扭矩传感器读数将对象推向目标位置,同时保持其直立。我们进行了广泛的实验,以证明可可在模拟中的各种设置和动力学属性中的能力,以及在真实机器人上的SIM卡转移方案中(视频:https://youtu.be/nrmjyksh1kc)
General contact-rich manipulation problems are long-standing challenges in robotics due to the difficulty of understanding complicated contact physics. Deep reinforcement learning (RL) has shown great potential in solving robot manipulation tasks. However, existing RL policies have limited adaptability to environments with diverse dynamics properties, which is pivotal in solving many contact-rich manipulation tasks. In this work, we propose Contact-aware Online COntext Inference (COCOI), a deep RL method that encodes a context embedding of dynamics properties online using contact-rich interactions. We study this method based on a novel and challenging non-planar pushing task, where the robot uses a monocular camera image and wrist force torque sensor reading to push an object to a goal location while keeping it upright. We run extensive experiments to demonstrate the capability of COCOI in a wide range of settings and dynamics properties in simulation, and also in a sim-to-real transfer scenario on a real robot (Video: https://youtu.be/nrmJYksh1Kc)