论文标题

从覆盖地图和辅助栅格数据中综合光学和SAR图像

Synthesizing Optical and SAR Imagery From Land Cover Maps and Auxiliary Raster Data

论文作者

Baier, Gerald, Deschemps, Antonin, Schmitt, Michael, Yokoya, Naoto

论文摘要

我们使用生成对抗网络(GAN)合成光学RGB和合成孔径雷达(SAR)遥感图像和辅助栅格数据。在遥感中,许多类型的数据,例如数字高程模型(DEM)或降水图,通常不会反映在土地覆盖地图中,但仍会影响图像内容或结构。在合成过程中包括此类数据会提高生成的图像的质量,并对它们的特性更具控制权。在空间自适应归一化层中融合了输入,并应用于由编码器和解码器组成的全面发电机架构,以充分利用辅助栅格数据中的信息内容。当使用相应的数据集训练时,我们的方法成功合成了培养基(10 m)和高(1 m)分辨率图像。我们使用平均交点是使用工会(mious),像素精度和Fréchet成立距离(FID)的均值交叉点(FIDS)的数据融合的优势。手工挑选的图像体现了融合信息如何避免合成图像中的歧义。通过稍微编辑输入,我们的方法可用于合成逼真的变化,即提高水位。源代码可在https://github.com/gbaier/rs_img_synth上获得,我们在https://ieee-dataport.org/open-access/geonrw上发布了新创建的高分辨率数据集。

We synthesize both optical RGB and synthetic aperture radar (SAR) remote sensing images from land cover maps and auxiliary raster data using generative adversarial networks (GANs). In remote sensing, many types of data, such as digital elevation models (DEMs) or precipitation maps, are often not reflected in land cover maps but still influence image content or structure. Including such data in the synthesis process increases the quality of the generated images and exerts more control on their characteristics. Spatially adaptive normalization layers fuse both inputs and are applied to a full-blown generator architecture consisting of encoder and decoder to take full advantage of the information content in the auxiliary raster data. Our method successfully synthesizes medium (10 m) and high (1 m) resolution images when trained with the corresponding data set. We show the advantage of data fusion of land cover maps and auxiliary information using mean intersection over unions (mIoUs), pixel accuracy, and Fréchet inception distances (FIDs) using pretrained U-Net segmentation models. Handpicked images exemplify how fusing information avoids ambiguities in the synthesized images. By slightly editing the input, our method can be used to synthesize realistic changes, i.e., raising the water levels. The source code is available at https://github.com/gbaier/rs_img_synth and we published the newly created high-resolution dataset at https://ieee-dataport.org/open-access/geonrw.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源