论文标题

基于散射转换的图像聚类使用投影到正交补体上

Scattering Transform Based Image Clustering using Projection onto Orthogonal Complement

论文作者

Villar-Corrales, Angel, Morgenshtern, Veniamin I.

论文摘要

在过去的几年中,图像聚类的大幅改进是由深度学习的最新进展推动的。但是,由于深神经网络的建筑复杂性,没有数学理论可以解释深度聚类技术的成功。在这项工作中,我们介绍了投影散射的光谱聚类(PSSC),这是一种用于图像群集的最先进,稳定和快速算法,这在数学上也可以解释。 PSSC包括一种新的方法来利用小图像的散射变换的几何结构。该方法的启发是受到观察的启发:在散射变换域中,由与各个类别数据矩阵的少数最大特征值相对应的特征向量形成的子空间几乎共享不同类别之间。因此,投影那些共享子空间可降低类内变异性,从而大大提高了聚类性能。我们将此方法投影称为正交补体(POC)。我们的实验表明,PSSC在所有浅集群算法中获得最佳结果。此外,它可以达到可比的聚类性能与最近最新的聚类技术的性能,同时将执行时间减少多个数量级。本着可重复的研究精神,我们与论文一起发布了高质量的代码存储库。

In the last few years, large improvements in image clustering have been driven by the recent advances in deep learning. However, due to the architectural complexity of deep neural networks, there is no mathematical theory that explains the success of deep clustering techniques. In this work we introduce Projected-Scattering Spectral Clustering (PSSC), a state-of-the-art, stable, and fast algorithm for image clustering, which is also mathematically interpretable. PSSC includes a novel method to exploit the geometric structure of the scattering transform of small images. This method is inspired by the observation that, in the scattering transform domain, the subspaces formed by the eigenvectors corresponding to the few largest eigenvalues of the data matrices of individual classes are nearly shared among different classes. Therefore, projecting out those shared subspaces reduces the intra-class variability, substantially increasing the clustering performance. We call this method Projection onto Orthogonal Complement (POC). Our experiments demonstrate that PSSC obtains the best results among all shallow clustering algorithms. Moreover, it achieves comparable clustering performance to that of recent state-of-the-art clustering techniques, while reducing the execution time by more than one order of magnitude. In the spirit of reproducible research, we publish a high quality code repository along with the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源