论文标题
在雾网络中延迟反馈的同行卸载
Peer Offloading with Delayed Feedback in Fog Networks
论文作者
论文摘要
与云计算相比,雾计算在网络边缘执行计算和服务,从而减轻了数据中心的计算负担并减少了端设备的任务延迟。计算延迟是雾计算中的关键性能指标,尤其是对于实时应用程序。在本文中,我们研究了具有未知动态的雾网络的同行计算卸载问题。在这种情况下,每个FOG节点(FN)可以以时间插槽方式将其计算任务卸载到相邻的FNS。但是,由于同伴FNS的处理时间的不确定性,卸载延迟无法立即馈回任务调度员。此外,当不同的FN同时将任务卸载到一个FN时,同行竞争发生。为了解决上述困难,我们将计算卸载问题建模为延迟信息反馈的顺序选择问题。使用对抗性多臂强盗框架,我们构建了在线学习政策,以处理延迟的信息反馈。不同的争论解决方法被认为可以解决同伴竞争。性能分析表明,拟议算法的遗憾或次优FN选择的性能损失达到了次线性订单,这表明了最佳的FN选择策略。此外,我们证明了提出的策略可以导致NASH平衡(NE),所有FNS都可以执行相同的政策。仿真结果验证了拟议政策的有效性。
Comparing to cloud computing, fog computing performs computation and services at the edge of networks, thus relieving the computation burden of the data center and reducing the task latency of end devices. Computation latency is a crucial performance metric in fog computing, especially for real-time applications. In this paper, we study a peer computation offloading problem for a fog network with unknown dynamics. In this scenario, each fog node (FN) can offload their computation tasks to neighboring FNs in a time slot manner. The offloading latency, however, could not be fed back to the task dispatcher instantaneously due to the uncertainty of the processing time in peer FNs. Besides, peer competition occurs when different FNs offload tasks to one FN at the same time. To tackle the above difficulties, we model the computation offloading problem as a sequential FN selection problem with delayed information feedback. Using adversarial multi-arm bandit framework, we construct an online learning policy to deal with delayed information feedback. Different contention resolution approaches are considered to resolve peer competition. Performance analysis shows that the regret of the proposed algorithm, or the performance loss with suboptimal FN selections, achieves a sub-linear order, suggesting an optimal FN selection policy. In addition, we prove that the proposed strategy can result in a Nash equilibrium (NE) with all FNs playing the same policy. Simulation results validate the effectiveness of the proposed policy.