论文标题
连贯激发的氮离子中的光子保留
Photon retention in coherently excited nitrogen ions
论文作者
论文摘要
量子光学器件中的量子相干性是光学信息处理和光操作的重要组成部分。尽管有很多缺点,但碱金属蒸气尽管有许多缺点,但由于方便的近红外激发,强烈的偶极转变和长寿相干性,传统上仍将量子光学蒸发用作工作介质。在这里,我们提出并实验证明了在相干激发的分子氮离子(N2+)系统中,量子相干性的光子保留率,并随后重新散发,这些系统是使用强大的800 nm femtosecond激光脉冲产生的。通过量子相干性促进的这种光子保留率不断直接释放出数十秒的可释放相干光子,但可以通过延迟的脉搏脉冲以1580 nm的含量为中心,通过两光孔谐振的吸收,导致329.3 nm的强烈辐射。我们揭示了激发状态人群在该系统中传递如此弱的重新喷射光子的关键作用。这一新发现揭示了N2+中连贯的量子控制的性质,用于在偏远大气中进行光学信息存储的潜在平台,并有助于进一步探索具有强场离子化分子的量子光学平台中基本相互作用的探索。
Quantum coherence in quantum optics is an essential part of optical information processing and light manipulation. Alkali metal vapors, despite the numerous shortcomings, are traditionally used in quantum optics as a working medium due to convenient near-infrared excitation, strong dipole transitions and long-lived coherence. Here, we proposed and experimentally demonstrated photon retention and subsequent re-emittance with the quantum coherence in a system of coherently excited molecular nitrogen ions (N2+) which are produced using a strong 800 nm femtosecond laser pulse. Such photon retention, facilitated by quantum coherence, keeps releasing directly-unmeasurable coherent photons for tens of picoseconds, but is able to be read-out by a time-delayed femtosecond pulse centered at 1580 nm via two-photon resonant absorption, resulting in a strong radiation at 329.3 nm. We reveal a pivotal role of the excited-state population to transmit such extremely weak re-emitted photons in this system. This new finding unveils the nature of the coherent quantum control in N2+ for the potential platform for optical information storage in the remote atmosphere, and facilitates further exploration of fundamental interactions in the quantum optical platform with strong-field ionized molecules.