论文标题

Modnet:通过客观分解实时无构图的肖像垫子

MODNet: Real-Time Trimap-Free Portrait Matting via Objective Decomposition

论文作者

Ke, Zhanghan, Sun, Jiayu, Li, Kaican, Yan, Qiong, Lau, Rynson W. H.

论文摘要

现有的肖像床位方法要么需要辅助输入,这些输入要昂贵,要么涉及计算上昂贵的多个阶段,从而使其不适合实时应用。在这项工作中,我们提出了一个轻巧的零件目标分解网络(MODNET),用于实时使用单个输入图像实时肖像垫。高效设计背后的关键思想是通过明确约束同时优化一系列子目标。此外,MODNET还包括两种新型技术,用于提高模型效率和鲁棒性。首先,将有效的非常空间金字塔池(E-ASPP)模块引入了熔融多尺度特征以进行语义估计。其次,提出了一种自我监督的子目标一致性(SOC)策略,以使MODNET适应现实世界中的数据,以解决无构图方法常见的域移位问题。 ModNet很容易以端到端的方式进行培训。它比同期方法快得多,并且在1080TI GPU上以每秒67帧的速度运行。实验表明,ModNet在Adobe Matting数据集和我们提出的精心设计的摄影肖像垫(PPM-100)基准的基准上都大量优于先前的无构图方法。此外,ModNet在每日照片和视频上取得了显着的结果。我们的代码和型号可在https://github.com/zhkkke/modnet上找到,并且PPM-100基准在https://github.com/zhkkke/ppm上发布。

Existing portrait matting methods either require auxiliary inputs that are costly to obtain or involve multiple stages that are computationally expensive, making them less suitable for real-time applications. In this work, we present a light-weight matting objective decomposition network (MODNet) for portrait matting in real-time with a single input image. The key idea behind our efficient design is by optimizing a series of sub-objectives simultaneously via explicit constraints. In addition, MODNet includes two novel techniques for improving model efficiency and robustness. First, an Efficient Atrous Spatial Pyramid Pooling (e-ASPP) module is introduced to fuse multi-scale features for semantic estimation. Second, a self-supervised sub-objectives consistency (SOC) strategy is proposed to adapt MODNet to real-world data to address the domain shift problem common to trimap-free methods. MODNet is easy to be trained in an end-to-end manner. It is much faster than contemporaneous methods and runs at 67 frames per second on a 1080Ti GPU. Experiments show that MODNet outperforms prior trimap-free methods by a large margin on both Adobe Matting Dataset and a carefully designed photographic portrait matting (PPM-100) benchmark proposed by us. Further, MODNet achieves remarkable results on daily photos and videos. Our code and models are available at https://github.com/ZHKKKe/MODNet, and the PPM-100 benchmark is released at https://github.com/ZHKKKe/PPM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源