论文标题

科苏尔代数的规范分辨率

Canonical Resolutions over Koszul Algebras

论文作者

Faber, Eleonore, Juhnke-Kubitzke, Martina, Lindo, Haydee, Miller, Claudia, G., Rebecca R., Seceleanu, Alexandra

论文摘要

我们将Buchsbaum和Eisenbud的决议概括为多项式环的最大理想的力量,以解决分级Koszul代数的同质最大理想的能力。与Green和Mart \'ınez-Villa \ cite {greenmartinezvilla}或mart \'ınez-Villa和Zacharia \ cite {Martinezvillazacharia}相比,我们的方法的优点是,与格林和玛特\'ınez-villa \ cite {greenmartinezvilla}或玛特{greenmartinezvilla}相比,制定更明确和最小的决议。

We generalize Buchsbaum and Eisenbud's resolutions for the powers of the maximal ideal of a polynomial ring to resolve powers of the homogeneous maximal ideal over graded Koszul algebras. Our approach has the advantage of producing resolutions that are both more explicit and minimal compared to those previously discovered by Green and Mart\'ınez-Villa \cite{GreenMartinezVilla} or Mart\'ınez-Villa and Zacharia \cite{MartinezVillaZacharia}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源