论文标题
基于替代的贝叶斯比较计算昂贵的模型:应用于微生物诱导的方解石沉淀
Surrogate-based Bayesian Comparison of Computationally Expensive Models: Application to Microbially Induced Calcite Precipitation
论文作者
论文摘要
受微生物活性影响的地下储层中的地球化学过程改变了多孔介质的材料特性。这是地下储层中一个复杂的生物地球化学过程,目前包含强烈的概念不确定性。这意味着,描述生物地球化学过程的几种建模方法是合理的,建模者面临选择最合适的方法的不确定性。一旦观察数据可用,就可以使用严格的贝叶斯模型选择并伴随着贝叶斯模型合理性分析,以选择最合适的模型,即根据可用数据来描述基本物理过程的模型。但是,生物地球化学建模在计算上非常苛刻,因为它概念化了多孔培养基中不同阶段,生物量动力学,地球化学,降水和溶解。因此,贝叶斯框架不能直接基于完整的计算模型,因为这需要太多昂贵的模型评估。为了解决这个问题,我们建议在为竞争性生物地球化学模型构建替代物后同时执行贝叶斯模型选择和合理性分析。在这里,我们使用任意多项式混乱的扩展。我们通过引入最终模型权重的新校正因子来解释贝叶斯分析中的近似误差。因此,我们扩展了贝叶斯合理性分析,并评估计算昂贵模型的模型相似性。我们在微生物诱导的多孔培养基中微生物诱导的方解石沉淀的代表性场景上演示了该方法。我们对合理性分析的扩展提供了一种合适的方法,用于比较计算要求的模型,并深入了解可靠的模型性能所需的数据量。
Geochemical processes in subsurface reservoirs affected by microbial activity change the material properties of porous media. This is a complex biogeochemical process in subsurface reservoirs that currently contains strong conceptual uncertainty. This means, several modeling approaches describing the biogeochemical process are plausible and modelers face the uncertainty of choosing the most appropriate one. Once observation data becomes available, a rigorous Bayesian model selection accompanied by a Bayesian model justifiability analysis could be employed to choose the most appropriate model, i.e. the one that describes the underlying physical processes best in the light of the available data. However, biogeochemical modeling is computationally very demanding because it conceptualizes different phases, biomass dynamics, geochemistry, precipitation and dissolution in porous media. Therefore, the Bayesian framework cannot be based directly on the full computational models as this would require too many expensive model evaluations. To circumvent this problem, we suggest performing both Bayesian model selection and justifiability analysis after constructing surrogates for the competing biogeochemical models. Here, we use the arbitrary polynomial chaos expansion. We account for the approximation error in the Bayesian analysis by introducing novel correction factors for the resulting model weights. Thereby, we extend the Bayesian justifiability analysis and assess model similarities for computationally expensive models. We demonstrate the method on a representative scenario for microbially induced calcite precipitation in a porous medium. Our extension of the justifiability analysis provides a suitable approach for the comparison of computationally demanding models and gives an insight on the necessary amount of data for a reliable model performance.