论文标题

学习以物理风格的压缩感测的稀疏结构

Learning sparse structures for physics-inspired compressed sensing

论文作者

Dorffer, Clément, Paviet-Salomon, Thomas, Chenadec, Gilles Le, Drémeau, Angélique

论文摘要

在水下声学中,浅水环境在考虑低频来源时充当了模态色散波导。在这种情况下,传播信号可以描述为少数模态组件的总和,每个模态组件都根据自己的波数传播。估计这些波数是了解传播环境以及发射来源的关键兴趣。为了解决这个问题,我们最近提出了一种贝叶斯的方法,利用了先验的稀疏性。在处理宽带源时,可以通过整合将波数从一个频率连接到另一个频率的特定依赖性来进一步改进该模型。在这项贡献中,我们建议依靠依靠受限的玻尔兹曼机器(Boltzmann Machine)的新方法,该方法被利用为一种通用的结构性稀疏模型。这种模型确实可以使用知名和已验证的算法有效地在物理逼真的模拟数据上有效地学习。

In underwater acoustics, shallow water environments act as modal dispersive waveguides when considering low-frequency sources. In this context, propagating signals can be described as a sum of few modal components, each of them propagating according to its own wavenumber. Estimating these wavenumbers is of key interest to understand the propagating environment as well as the emitting source. To solve this problem, we proposed recently a Bayesian approach exploiting a sparsity-inforcing prior. When dealing with broadband sources, this model can be further improved by integrating the particular dependence linking the wavenumbers from one frequency to the other. In this contribution, we propose to resort to a new approach relying on a restricted Boltzmann machine, exploited as a generic structured sparsity-inforcing model. This model, derived from deep Bayesian networks, can indeed be efficiently learned on physically realistic simulated data using well-known and proven algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源