论文标题
学习跳舞:图形卷积对抗网络,以产生音频逼真的舞蹈动作
Learning to dance: A graph convolutional adversarial network to generate realistic dance motions from audio
论文作者
论文摘要
通过学习技术综合人类运动正在成为一种越来越流行的方法,可以减轻新数据捕获以制作动画的需求。学会从音乐自然地移动到舞蹈,是人类经常毫不费力地表现的更为复杂的动议之一。每个舞蹈运动都是独一无二的,但是这样的运动保持了舞蹈风格的核心特征。大多数方法通过经典的卷积和递归神经模型解决了这一问题,这是由于运动歧管结构的非欧国人几何形状而经历训练和可变性问题。在本文中,我们设计了一种基于图形卷积网络的新方法来解决来自音频信息的自动舞蹈生成问题。我们的方法使用以输入音乐音频为条件的对抗性学习方案来创建自然动作,以保留不同音乐风格的关键动作。我们通过生成方法和用户研究的三个定量指标评估我们的方法。结果表明,提出的GCN模型的表现优于在不同实验中以音乐为条件的最先进的舞蹈生成方法。此外,我们的图形横线方法更简单,易于训练,并且能够在定性和不同的定量指标上产生更现实的运动方式。它还提出了一种视觉运动感知质量,可与真实运动数据相当。
Synthesizing human motion through learning techniques is becoming an increasingly popular approach to alleviating the requirement of new data capture to produce animations. Learning to move naturally from music, i.e., to dance, is one of the more complex motions humans often perform effortlessly. Each dance movement is unique, yet such movements maintain the core characteristics of the dance style. Most approaches addressing this problem with classical convolutional and recursive neural models undergo training and variability issues due to the non-Euclidean geometry of the motion manifold structure.In this paper, we design a novel method based on graph convolutional networks to tackle the problem of automatic dance generation from audio information. Our method uses an adversarial learning scheme conditioned on the input music audios to create natural motions preserving the key movements of different music styles. We evaluate our method with three quantitative metrics of generative methods and a user study. The results suggest that the proposed GCN model outperforms the state-of-the-art dance generation method conditioned on music in different experiments. Moreover, our graph-convolutional approach is simpler, easier to be trained, and capable of generating more realistic motion styles regarding qualitative and different quantitative metrics. It also presented a visual movement perceptual quality comparable to real motion data.