论文标题
Bose-Einstein冷凝物孤子量子量子态用于计量应用
Bose-Einstein condensate soliton qubit states for metrological applications
论文作者
论文摘要
通过利用Bose-Einstein冷凝物孤子,通过非线性Josephson效应耦合,将光学操纵并捕获在双孔电势中,我们提出了具有两个孤子量子状态的新型量子计量应用。除了在不同情况下稳态溶液外,还进行相位空间分析,就种群不平衡 - 相位差异变量而言,还进行了以证明宏观量子自我捕获方案。 Schrödinger-cat状态,最大路径输入($ n00n $)状态以及宏观的孤子量子量,并利用了在二进制(非正交)国家歧视问题框架内获得的宏观状态的可区分性。对于线性量子计量方法框架中的任意阶段估计,这些宏观的孤子状态显示出达到海森堡极限(HL)的扩展。说明了这些示例,以估计凝结物的地面和首次激发宏观状态之间的角频率,这为当前频率标准技术打开了新的观点。
By utilizing Bose-Einstein condensate solitons, optically manipulated and trapped in a double-well potential, coupled through nonlinear Josephson effect, we propose novel quantum metrology applications with two soliton qubit states. In addition to steady-state solutions in different scenarios, phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes. Schrödinger-cat states, maximally path-entangled ($N00N$) states, and macroscopic soliton qubits are predicted and exploited for the distinguishability of obtained macroscopic states in the framework of binary (non-orthogonal) state discrimination problem. For arbitrary phase estimation in the framework of linear quantum metrology approach, these macroscopic soliton states are revealed to have a scaling up to the Heisenberg limit (HL). The examples are illustrated for HL estimation of angular frequency between the ground and first excited macroscopic states of the condensate, which opens new perspectives for current frequency standards technologies.