论文标题
使用听觉和人口统计信息的肺部疾病诊断的神经网络
Neural Networks for Pulmonary Disease Diagnosis using Auditory and Demographic Information
论文作者
论文摘要
肺部疾病每年和每年都会影响数百万的生命。新型肺部感染Covid-19的大流行爆发比以往任何时候都更加引起了研究界的注意,对机械辅助诊断的呼吸疾病诊断。因此,本文努力利用机器学习来分类呼吸问题,并提出了一个框架,该框架使用数据集提供了尽可能多的相关信息(听觉和人口统计信息),以提高诊断系统的敏感性和特殊性。首先,我们使用深层卷积神经网络(DCNN)来处理和对公开发布的肺听觉数据集进行分类,然后我们利用数据集中的现有人口统计信息的优势,并表明,肺部分类的准确性增加了5%,而当对人群信息结合进行听觉信息培训时,肺部分类的准确性增加了5%。由于可以使用计算机视觉提取人口统计数据,因此我们建议使用另一个平行DCNN估算处理计算机测试视觉的受试者的人口统计信息。最后,作为将医疗保健系统带到用户指尖的主张,我们将听觉DCNN模型的部署特征衡量到NVIDIA TX2开发委员会的处理组件。
Pulmonary diseases impact millions of lives globally and annually. The recent outbreak of the pandemic of the COVID-19, a novel pulmonary infection, has more than ever brought the attention of the research community to the machine-aided diagnosis of respiratory problems. This paper is thus an effort to exploit machine learning for classification of respiratory problems and proposes a framework that employs as much correlated information (auditory and demographic information in this work) as a dataset provides to increase the sensitivity and specificity of a diagnosing system. First, we use deep convolutional neural networks (DCNNs) to process and classify a publicly released pulmonary auditory dataset, and then we take advantage of the existing demographic information within the dataset and show that the accuracy of the pulmonary classification increases by 5% when trained on the auditory information in conjunction with the demographic information. Since the demographic data can be extracted using computer vision, we suggest using another parallel DCNN to estimate the demographic information of the subject under test visioned by the processing computer. Lastly, as a proposition to bring the healthcare system to users' fingertips, we measure deployment characteristics of the auditory DCNN model onto processing components of an NVIDIA TX2 development board.