论文标题
某些Bratu类型边界价值问题的准确光谱搭配解决方案
Accurate Spectral Collocation Solutions to some Bratu's Type Boundary Value Problems
论文作者
论文摘要
我们通过Chebyshev光谱搭配解决了一些真正的非线性Liouville-Bratu-Gelfand类型,1D和2D边界价值问题。问题是在平方域$ [-1,1] \ times [-1,1] $上提出的,所附的边界条件是同质的dirichlet。我们特别注意搜索解决方案的分叉分支,并试图从经验上估算每个分叉品种的吸引力盆地。近似线性问题的第一个特征函数的第一个特征向量被用作求解Chebyshev搭配的非线性代数系统的初始猜测,以找到“小”解决方案。对于分叉参数的相同值,我们使用另一个初始猜测,即最低基函数(1点近似),以找到“大”解决方案。 Newton-Kantorovich方法在不超过八个迭代中非常快速地解决非线性代数系统。除了精确外,该方法在数值上是稳定,健壮且易于实现的。实际上,MATLAB代码本质上包含三个编程行。到目前为止,它的简单性和准确性超过了解决一些知名问题的各种方法。我们最终提供了一些数值和图形结果,以强调我们方法的有效性和有效性,即牛顿更新的规范在求解代数系统方面以及解决方案的Chebyshev系数的降低率。
We solve by Chebyshev spectral collocation some genuinely nonlinear Liouville-Bratu-Gelfand type, 1D and a 2D boundary value problems. The problems are formulated on the square domain $[-1, 1]\times[-1, 1]$ and the boundary condition attached is a homogeneous Dirichlet one. We pay a particular attention to the bifurcation branch on which a solution is searched and try to estimate empirically the attraction basin for each bifurcation variety. The first eigenvector approximating the corresponding the first eigenfunction of the linear problem is used as an initial guess in solving the non-linear algebraic system of Chebyshev collocation to find the "small" solution. For the same value of the bifurcation parameter we use another initial guess, namely lowest basis function (1 point approximation), to find the "big" solution. The Newton-Kantorovich method solves very fast the non-linear algebraic system in no more than eight iterations. Beyond being exact, the method is numerically stable, robust and easy to implement. Actually, the MATLAB code essentially contains three programming lines. It by far surpasses in simplicity and accuracy various methods used to solve some well-known problems. We end up by providing some numerical and graphical outcomes in order to underline the validity and the effectiveness of our method, i.e., norms of Newton updates in solving the algebraic systems and the decreasing rate of Chebyshev coeffcients of solution.