论文标题

用于构建MPC的输入凸神经网络

Input Convex Neural Networks for Building MPC

论文作者

Bünning, Felix, Schalbetter, Adrian, Aboudonia, Ahmed, de Badyn, Mathias Hudoba, Heer, Philipp, Lygeros, John

论文摘要

建筑物中的模型预测控制可以大大减少其能耗。创建和维护建筑物的第一原则模型所需的成本和精力使数据驱动建模成为该领域中有吸引力的替代方案。在MPC中,模型构成了优化问题的基础,该问题的解决方案提供了要应用于系统的控制信号。该优化问题必须重复解决的事实意味着对可以使用的学习体系结构的限制。在这里,我们调整输入凸神经网络通常仅用于一步预测的凸,用于构建MPC。我们对它们的结构和权重介绍了其他约束,以实现多步预测的凸输入输出关系。我们评估了模型准确性的其他约束的后果,并在瑞士公寓的真实MPC实验中测试模型。在两个为期五天的冷却实验中,具有输入凸神经网络的MPC能够将室温保持在舒适性限制下,同时最大程度地减少冷却能源消耗。

Model Predictive Control in buildings can significantly reduce their energy consumption. The cost and effort necessary for creating and maintaining first principle models for buildings make data-driven modelling an attractive alternative in this domain. In MPC the models form the basis for an optimization problem whose solution provides the control signals to be applied to the system. The fact that this optimization problem has to be solved repeatedly in real-time implies restrictions on the learning architectures that can be used. Here, we adapt Input Convex Neural Networks that are generally only convex for one-step predictions, for use in building MPC. We introduce additional constraints to their structure and weights to achieve a convex input-output relationship for multistep ahead predictions. We assess the consequences of the additional constraints for the model accuracy and test the models in a real-life MPC experiment in an apartment in Switzerland. In two five-day cooling experiments, MPC with Input Convex Neural Networks is able to keep room temperatures within comfort constraints while minimizing cooling energy consumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源