论文标题

基于线性对称性的分离的度量标准

A Metric for Linear Symmetry-Based Disentanglement

论文作者

Rey, Luis A. Pérez, Tonnaer, Loek, Menkovski, Vlado, Holenderski, Mike, Portegies, Jacobus W.

论文摘要

(Higgins等,2018)提出的基于线性对称性的分解(LSBD)的定义概述了应表征捕获数据对称性的分离表示的属性。但是,尚不清楚如何衡量数据表示符合这些属性的程度。我们提出了一个评估数据表示达到LSBD水平的度量。我们提供了一种评估该指标的实用方法,并使用它来评估针对三个具有基础$ SO(2)$ symmetries的数据集获得的数据表示的分离。

The definition of Linear Symmetry-Based Disentanglement (LSBD) proposed by (Higgins et al., 2018) outlines the properties that should characterize a disentangled representation that captures the symmetries of data. However, it is not clear how to measure the degree to which a data representation fulfills these properties. We propose a metric for the evaluation of the level of LSBD that a data representation achieves. We provide a practical method to evaluate this metric and use it to evaluate the disentanglement of the data representations obtained for three datasets with underlying $SO(2)$ symmetries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源