论文标题
复杂的Monge-ampère方程的$ C^2 $ estimate的应用
An application of a $C^2$-estimate for a complex Monge-Ampère equation
论文作者
论文摘要
通过研究一个复杂的蒙格 - ampère方程式,我们向Chu-Lee-Tam的最新结果提供了一个替代证明,该结果涉及紧凑型Kähler歧管$ n^n $的预测性,其中$ \ ric_k <0 $ for某些整数$ k $,带有$ 1 <k <n $的$ k $,以及Canson $ k_n $ k__n $ k__n $的放大。
By studying a complex Monge-Ampère equation, we present an alternate proof to a recent result of Chu-Lee-Tam concerning the projectivity of a compact Kähler manifold $N^n$ with $\Ric_k< 0$ for some integer $k$ with $1<k<n$, and the ampleness of the canonical line bundle $K_N$.