论文标题
$ r^2 $通货膨胀的新型高源性变化
Novel higher-curvature variations of $R^2$ inflation
论文作者
论文摘要
我们提出了Starobinsky通货膨胀的新型扩展,其中涉及一类“几何”更高的校正,这些校正产生了二阶Friedmann-Lema-tree方程,并在宇宙学背景周围进行了二阶线性化方程。我们确定了该类别中的模型范围,该模型允许作为吸引子缓慢通货膨胀的扩展阶段。通过将这些理论嵌入抗DE保姆空间中,我们在两个主要的高阶曲率校正上得出了全息“单位性”界限。最后,我们计算标量和张量原始扰动的光谱属性的领先校正,包括修改后的一致性关系$ r = -8n_ {t} $。值得注意的是,全息图列出的模型范围几乎与标量光谱倾斜上的当前观察界界相吻合。我们的结果表明,未来的观察结果有可能区分此处考虑的不同高侵性校正。
We put forward novel extensions of Starobinsky inflation, involving a class of 'geometric' higher-curvature corrections that yield second-order Friedmann-Lemaître equations and second-order-in-time linearized equations around cosmological backgrounds. We determine the range of models within this class that admit an extended phase of slow roll inflation as an attractor. By embedding these theories in anti-de Sitter space, we derive holographic 'unitarity' bounds on the two dominant higher-order curvature corrections. Finally we compute the leading corrections to the spectral properties of scalar and tensor primordial perturbations, including the modified consistency relation $r=-8n_{T}$. Remarkably, the range of models singled out by holography nearly coincides with the current observational bounds on the scalar spectral tilt. Our results indicate that future observations have the potential to discriminate between different higher-curvature corrections considered here.