论文标题

BSNET:用于几个射击细粒图像分类的双相似性网络

BSNet: Bi-Similarity Network for Few-shot Fine-grained Image Classification

论文作者

Li, Xiaoxu, Wu, Jijie, Sun, Zhuo, Ma, Zhanyu, Cao, Jie, Xue, Jing-Hao

论文摘要

几乎没有用于细粒图像分类的学习,在计算机视觉中引起了最近的关注。在几乎没有学习的方法中,由于简单性和有效性,基于公制的方法在许多任务上都是最新的。大多数基于度量的方法都采用单个相似度度量,从而获得单个特征空间。但是,如果可以通过两种不同的相似性度量同时对样品进行很好的分类,则类中的样本可以在较小的特征空间中更紧凑,从而产生更具歧视性特征图。由此激励,我们提出了一个所谓的\ textit {bi-simality网络}(\ textit {bsnet}),该{bsnet})由一个单个嵌入模块和两个相似度度量的单个模块组成。在支持图像和查询图像通过基于卷积的嵌入模块之后,双相似度模块根据两种不同特征的相似性衡量标准来学习特征地图。通过这种方式,该模型可以从几乎没有细粒度图像的镜头中学习更多歧视性和相似性偏低的特征,从而可以显着提高模型的概括能力。通过稍作修改已建立的度量/相似性网络的广泛实验,我们表明所提出的方法可以对几个细颗粒的图像基准数据集产生实质性改进。代码可在以下网址提供:https://github.com/spraise/bsnet

Few-shot learning for fine-grained image classification has gained recent attention in computer vision. Among the approaches for few-shot learning, due to the simplicity and effectiveness, metric-based methods are favorably state-of-the-art on many tasks. Most of the metric-based methods assume a single similarity measure and thus obtain a single feature space. However, if samples can simultaneously be well classified via two distinct similarity measures, the samples within a class can distribute more compactly in a smaller feature space, producing more discriminative feature maps. Motivated by this, we propose a so-called \textit{Bi-Similarity Network} (\textit{BSNet}) that consists of a single embedding module and a bi-similarity module of two similarity measures. After the support images and the query images pass through the convolution-based embedding module, the bi-similarity module learns feature maps according to two similarity measures of diverse characteristics. In this way, the model is enabled to learn more discriminative and less similarity-biased features from few shots of fine-grained images, such that the model generalization ability can be significantly improved. Through extensive experiments by slightly modifying established metric/similarity based networks, we show that the proposed approach produces a substantial improvement on several fine-grained image benchmark datasets. Codes are available at: https://github.com/spraise/BSNet

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源