论文标题
月球火山造成的瞬态气氛的寿命
Lifetime of a transient atmosphere produced by Lunar Volcanism
论文作者
论文摘要
在月球历史的早期,火山量超过了,可能产生了定期的毫里巴尔级气氛(Needham and Kring,2017年)。我们检查了这种大气的相关大气逃生过程和寿命。在一系列温度中,计算热逃逸速率是大气质量的函数,包括存在光成分(例如H2)的影响。使用与早期太阳一致的较高EUV和血浆通量的估计来计算光化学逃逸和大气溅射。在Vondrak(1974)中进行的经常使用的表面牛仔裤计算不适用于所考虑的大气的尺度和组成。我们表明,如果平均外球菌温度低于350-400K,则太阳能驱动的非热逃脱可以在1 MYR上消除早期的CO Millibar水平氛围。但是,如果太阳能UV/EUV吸收吸收高度> 400 k热量> 400 k热逃亡率越来越多地逃脱损失率,我们估计了100个能量的损失率,而最终能源限制了100限制的损失。
Early in the Moon's history volcanic outgassing may have produced a periodic millibar level atmosphere (Needham and Kring, 2017). We examined the relevant atmospheric escape processes and lifetime of such an atmosphere. Thermal escape rates were calculated as a function of atmospheric mass for a range of temperatures including the effect of the presence of a light constituent such as H2. Photochemical escape and atmospheric sputtering were calculated using estimates of the higher EUV and plasma fluxes consistent with the early Sun. The often used surface Jeans calculation carried out in Vondrak (1974) is not applicable for the scale and composition of the atmosphere considered. We show that solar driven non-thermal escape can remove an early CO millibar level atmosphere on the order of 1 Myr if the average exobase temperature is below 350 - 400 K. However, if solar UV/EUV absorption heats the upper atmosphere to temperatures > 400 K thermal escape increasingly dominates the loss rate, and we estimated a minimum lifetime of 100's of years considering energy limited escape.