论文标题
在适当的弦图数量上
On the proper orientation number of chordal graphs
论文作者
论文摘要
图$ g =(v,e)$的方向$ d $是从$ g $获得的挖掘物,它可以通过具有相同端顶点的两个可能的弧度中的一个替换每个边缘。对于v(g)$中的每个$ v \,$ d $ in $ d^-_ d(v)$表示的$ v $的indegree是$ d $ in $ d $中的$ v $的弧数。如果$ d^-_ d(u)\ neq d^-_ d(v)$,对于所有$ uv \ e(g)$中的$ d^-_ d(u)\ neq d^-_d(v)$,方向$ d $是正确的。最多$ k $的最大indegree的方向称为$ k $取向。 $ g $的适当定向数量是$ \comperrightarrowχ(g)$表示的,是最小整数$ k $,因此$ g $可以接收适当的$ k $方向。我们证明,确定$ \oferrightArrowχ(g)\ leq k $对于有界直径的和弦图是否为NP组,但可以在准threshold图的子类中以线性时间求解。当通过$ k $参数化时,我们认为此问题是condal图的fpt,并认为不存在多项式内核,除非$ np \ subseteq conp/\ poly $。我们向拆分图的子类和线性内核提出了更好的内核。 关于边界,我们证明了块图子类的紧密上限。我们还展示了新的树木家庭,最多只有2个,最多3个。实际上,我们证明了一个通用界表明,任何具有相邻学位的$ g $至少$ c+1 $的图形$ g $最多都有$ c $。这意味着(外部)平面图的新类别具有有限的适当方向编号。我们还证明,最大外平面图$ g $,其弱二的路径满足$ \oferrightarrowχ(g)\ leq 13 $。最后,我们向无弦的无爪图和cographs的类别提出了简单的界限。
An orientation $D$ of a graph $G=(V,E)$ is a digraph obtained from $G$ by replacing each edge by exactly one of the two possible arcs with the same end vertices. For each $v \in V(G)$, the indegree of $v$ in $D$, denoted by $d^-_D(v)$, is the number of arcs with head $v$ in $D$. An orientation $D$ of $G$ is proper if $d^-_D(u)\neq d^-_D(v)$, for all $uv\in E(G)$. An orientation with maximum indegree at most $k$ is called a $k$-orientation. The proper orientation number of $G$, denoted by $\overrightarrowχ(G)$, is the minimum integer $k$ such that $G$ admits a proper $k$-orientation. We prove that determining whether $\overrightarrowχ(G) \leq k$ is NP-complete for chordal graphs of bounded diameter, but can be solved in linear-time in the subclass of quasi-threshold graphs. When parameterizing by $k$, we argue that this problem is FPT for chordal graphs and argue that no polynomial kernel exists, unless $NP\subseteq coNP/\ poly$. We present a better kernel to the subclass of split graphs and a linear kernel to the class of cobipartite graphs. Concerning bounds, we prove tight upper bounds for subclasses of block graphs. We also present new families of trees having proper orientation number at most 2 and at most 3. Actually, we prove a general bound stating that any graph $G$ having no adjacent vertices of degree at least $c+1$ have proper orientation number at most $c$. This implies new classes of (outer)planar graphs with bounded proper orientation number. We also prove that maximal outerplanar graphs $G$ whose weak-dual is a path satisfy $\overrightarrowχ(G)\leq 13$. Finally, we present simple bounds to the classes of chordal claw-free graphs and cographs.