论文标题
Poincaré集团在六个维度上的无限有限和无限的旋转表示
Massless finite and infinite spin representations of Poincaré group in six dimensions
论文作者
论文摘要
我们研究了六维Minkowski空间中庞加莱集团的无质量不可减至的表示。构建了Casimir操作员,并找到了其特征值。结果表明,有限的自旋(螺旋)表示由两个整数或半数数字定义,而无限自旋表示形式由真实参数$μ^2 $定义,一个整数或半数数字。
We study the massless irreducible representations of the Poincaré group in the six-dimensional Minkowski space. The Casimir operators are constructed and their eigenvalues are found. It is shown that the finite spin (helicity) representation is defined by two integer or half-integer numbers while the infinite spin representation is defined by the real parameter $μ^2$ and one integer or half-integer number.