论文标题

与爱的同级:我弹性平衡

Isostasy with Love: I Elastic equilibrium

论文作者

Beuthe, Mikael

论文摘要

ISOSTASY解释了为什么观察到的重力异常通常比仅在地形上所期望的要弱得多,以及为什么行星外壳可以在不分解的情况下支持高地形。然而,经典的等索方法忽略了内部应力和地质对地形支撑的贡献,并产生了对地质异常的模棱两可的预测。相反,应通过最大程度地减少弹性壳内部的偏斜弹性应力,或者通过长期限制身体的动态反应来定义等静态。我在这里实现了第一个选项,通过将通风等静态平衡作为弹性壳对表面和内部载荷的响应。等静止比率是根据偏离的爱数来定义的,这些爱数量化了相对于流体状态的偏差。爱数方法方法将等值层的物理学与弹性 - 雷神球形变形的技术性分开,并为选择室内结构提供了灵活性。由于在壳剪切模量的全球重新上,弹性等值是不变的,因此可以在流体壳的极限中定义,这揭示了与粘性等值稳定的密切联系。如果外壳是均匀的,则最小应力等音是对称为零偏转等索的弹性等级别的变体双重固定,该变体的物理较少,但更简单地计算。每个等静力模型与在壳的表面和底部施加的一般边界条件相结合,从而导致单参数等速率家族。在长波长下,边界条件的影响消失了,因为所有等静力家族成员产生相同的等静力比。在短波长时,地形受到浅应力支持,以使通风的同性抗议者变得类似于纯上衣或底部载荷。在自由使用的软件中实现了具有三个均匀层的不可压缩物体的等静力比率。

Isostasy explains why observed gravity anomalies are generally much weaker than what is expected from topography alone, and why planetary crusts can support high topography without breaking up. Classical isostasy, however, neglects internal stresses and geoid contributions to topographical support, and yields ambiguous predictions of geoid anomalies. Isostasy should instead be defined either by minimizing deviatoric elastic stresses within the elastic shell, or by studying the dynamic response of the body in the long-time limit. I implement here the first option by formulating Airy isostatic equilibrium as the response of an elastic shell to surface and internal loads. Isostatic ratios are defined in terms of deviatoric Love numbers which quantify deviations with respect to a fluid state. The Love number approach separates the physics of isostasy from the technicalities of elastic-gravitational spherical deformations, and provides flexibility in the choice of the interior structure. Since elastic isostasy is invariant under a global rescaling of the shell shear modulus, it can be defined in the fluid shell limit, which reveals a deep connection with viscous isostasy. If the shell is homogeneous, minimum stress isostasy is dual to a variant of elastic isostasy called zero deflection isostasy, which is less physical but simpler to compute. Each isostatic model is combined with general boundary conditions applied at the surface and bottom of the shell, resulting in one-parameter isostatic families. At long wavelength, the influence of boundary conditions disappears as all isostatic families members yield the same isostatic ratios. At short wavelength, topography is supported by shallow stresses so that Airy isostasy becomes similar to either pure top or bottom loading. The isostatic ratios of incompressible bodies with three homogeneous layers are implemented in freely available software.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源