论文标题
在Banach空间中的可齿状特性上
On Ball Dentable Property in Banach Spaces
论文作者
论文摘要
在这项工作中,我们介绍了Banach空间中可齿状特性的概念。我们研究了$ W^*$ - 可扁桃体的某些稳定性结果,从而在Banach空间理想的背景下讨论了有关球的可义能力的讨论。我们证明,可以将$ W^*$ - 可通用的属性从$ m $ - 理想的提升到整个Banach空间。对于Banach空间的严格理想,我们还证明了类似的结果。我们注意到,当分散$ k $时,空间$ c(k,x)^*$具有$ W*$ - 可齿状属性,并且$ x^\ ast $具有$ W^*$ - BALL可齿状属性。
In this work, we introduce the notion of Ball dentable property in Banach spaces. We study certain stability results for the $w^*$-Ball dentable property leading to a discussion on Ball dentability in the context of ideals of Banach spaces. We prove that the $w^*$-Ball-dentable property can be lifted from an $M$-ideal to the whole Banach Space. We also prove similar results for strict ideals of a Banach space. We note that the space $C(K,X)^*$ has $w*$-Ball dentable property when $K$ is dispersed and $X^\ast$ has the $w^*$-Ball dentable property.