论文标题
流体动力模拟中光环的飞溅边界
The splashback boundary of haloes in hydrodynamic simulations
论文作者
论文摘要
飞溅半径,$ r _ {\ rm sp} $,是一种出于身体动机的光环边界,可将光环的插入和崩溃的物质分开。我们在流体动力和暗物质中仅研究$ r _ {\ rm sp} $仅插图模拟。 $ r _ {\ rm sp} $的最常用签名是径向密度曲线最陡的半径。因此,我们明确地优化了与配置文件坡度的密度曲线拟合,并发现与其他优化相比,这会导致$ \ sim5 \%$大的半径。我们计算$ r _ {\ rm sp} $的光环,其质量在$ 10^{13-15} {\ rm m} _ {\ odot} $之间,作为光晕质量,增生率和红移的函数。 $ r _ {\ rm sp} $随着质量和红移而减小,用于与以前的工作一致的类似$ m _ {\ rm200m} $的光环。我们还发现,$ r _ {\ rm sp}/r _ {\ rm200m} $随晕机增值速率降低。我们将分析应用于与光环相关的暗物质,气体和卫星星系,以研究$ r _ {\ rm sp} $的观察势。气体曲线中最陡峭坡度的半径始终小于从暗物质曲线中计算出的值。星系剖面中最陡峭的斜率通常用于观测中,它倾向于与暗物质曲线一致,但对于较少的巨大光环而言较低。我们比较流体动力和n体暗物质中的$ r _ {\ rm sp} $仅模拟,并且没有发现由于添加了baryonic物理学而引起的显着差异。因此,仅暗物质的结果仅应适用于现实的光环。
The splashback radius, $R_{\rm sp}$, is a physically motivated halo boundary that separates infalling and collapsed matter of haloes. We study $R_{\rm sp}$ in the hydrodynamic and dark matter only IllustrisTNG simulations. The most commonly adopted signature of $R_{\rm sp}$ is the radius at which the radial density profiles are steepest. Therefore, we explicitly optimise our density profile fit to the profile slope and find that this leads to a $\sim5\%$ larger radius compared to other optimisations. We calculate $R_{\rm sp}$ for haloes with masses between $10^{13-15}{\rm M}_{\odot}$ as a function of halo mass, accretion rate and redshift. $R_{\rm sp}$ decreases with mass and with redshift for haloes of similar $M_{\rm200m}$ in agreement with previous work. We also find that $R_{\rm sp}/R_{\rm200m}$ decreases with halo accretion rate. We apply our analysis to dark matter, gas and satellite galaxies associated with haloes to investigate the observational potential of $R_{\rm sp}$. The radius of steepest slope in gas profiles is consistently smaller than the value calculated from dark matter profiles. The steepest slope in galaxy profiles, which are often used in observations, tends to agree with dark matter profiles but is lower for less massive haloes. We compare $R_{\rm sp}$ in hydrodynamic and N-body dark matter only simulations and do not find a significant difference caused by the addition of baryonic physics. Thus, results from dark matter only simulations should be applicable to realistic haloes.