论文标题
Point2Skeleton:从点云中学习骨骼表示
Point2Skeleton: Learning Skeletal Representations from Point Clouds
论文作者
论文摘要
我们介绍了Point2Skeleton,这是一种从点云学习骨骼表示的无监督方法。现有的骨骼化方法仅限于管状形状和水密输入的严格要求,而我们的方法旨在为复杂的结构和处理点云产生更广泛的骨骼表示。我们的关键思想是使用内侧轴变换(MAT)的见解来捕获原始输入点的内在几何和拓扑表现。我们首先通过学习几何变换来预测一组骨骼点,然后分析骨骼点的连通性以形成骨骼网状结构。广泛的评估和比较表明我们的方法具有出色的性能和鲁棒性。学到的骨骼表示将使点云的几个无监督任务,例如表面重建和分割。
We introduce Point2Skeleton, an unsupervised method to learn skeletal representations from point clouds. Existing skeletonization methods are limited to tubular shapes and the stringent requirement of watertight input, while our method aims to produce more generalized skeletal representations for complex structures and handle point clouds. Our key idea is to use the insights of the medial axis transform (MAT) to capture the intrinsic geometric and topological natures of the original input points. We first predict a set of skeletal points by learning a geometric transformation, and then analyze the connectivity of the skeletal points to form skeletal mesh structures. Extensive evaluations and comparisons show our method has superior performance and robustness. The learned skeletal representation will benefit several unsupervised tasks for point clouds, such as surface reconstruction and segmentation.