论文标题

一种平均场团队的方法来最大程度地减少感染在网络中的传播

A Mean-Field Team Approach to Minimize the Spread of Infection in a Network

论文作者

Arabneydi, Jalal, Aghdam, Amir G.

论文摘要

在本文中,提出了一种随机动态控制策略,以防止感染在同质网络上的传播。感染过程是持久的,即,一旦建立了网络,它将继续污染。假设有一套有限的网络管理选项,例如节点学位和促销计划,以最大程度地减少受感染节点的数量,同时考虑实施成本。该网络是由可交换受控的马尔可夫链建模的,马尔可夫链的过渡概率矩阵取决于三个参数:选定的网络管理选项,感染过程的状态以及受感染节点的经验分布(不一定是线性依赖性)。从平均场团队理论借用某些技术,使用动态编程分解和某些二项式概率质量函数的卷积,可以为任何有限数量的节点获得最佳策略。对于无限人口网络,最佳解决方案由钟形方程描述。结果表明,如果某些条件成立,则无限居民策略是有限型人口网络的有意义的次级求解解决方案。理论上的结果通过社交网络中的谣言控制的示例来验证。

In this paper, a stochastic dynamic control strategy is presented to prevent the spread of an infection over a homogeneous network. The infectious process is persistent, i.e., it continues to contaminate the network once it is established. It is assumed that there is a finite set of network management options available such as degrees of nodes and promotional plans to minimize the number of infected nodes while taking the implementation cost into account. The network is modeled by an exchangeable controlled Markov chain, whose transition probability matrices depend on three parameters: the selected network management option, the state of the infectious process, and the empirical distribution of infected nodes (with not necessarily a linear dependence). Borrowing some techniques from mean-field team theory the optimal strategy is obtained for any finite number of nodes using dynamic programming decomposition and the convolution of some binomial probability mass functions. For infinite-population networks, the optimal solution is described by a Bellman equation. It is shown that the infinite-population strategy is a meaningful sub-optimal solution for finite-population networks if a certain condition holds. The theoretical results are verified by an example of rumor control in social networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源