论文标题

XAI的符号AI:评估公平且可解释的自动招聘的LFIT归纳节目

Symbolic AI for XAI: Evaluating LFIT Inductive Programming for Fair and Explainable Automatic Recruitment

论文作者

Ortega, Alfonso, Fierrez, Julian, Morales, Aythami, Wang, Zilong, Ribeiro, Tony

论文摘要

机器学习方法与诸如法医,电子健康,招聘和电子学习之类的域中的生物识别技术和个人信息处理的相关性正在增长。在这些域中,建立在机器学习方法上的系统的白色框(可读)解释可能变得至关重要。归纳逻辑编程(ILP)是符号AI的子场,旨在自动学习有关数据过程的声明理论。从解释过渡(LFIT)中学习是一种ILP技术,它可以学习等于给定的黑盒系统(在某些条件下)等效的命题逻辑理论。目前的工作迈出了通用方法的第一步,通过在特定的AI应用程序场景中检查LFIT的可行性,以对经典机器学习的准确说明:基于使用机器学习方法生成的自动招聘的公平招聘:对融合软性生物识别信息(性别和种族)进行排名的自动招聘方法。我们在此特定问题上显示了LFIT的表现力,并提出了可以适用于其他领域的方案。

Machine learning methods are growing in relevance for biometrics and personal information processing in domains such as forensics, e-health, recruitment, and e-learning. In these domains, white-box (human-readable) explanations of systems built on machine learning methods can become crucial. Inductive Logic Programming (ILP) is a subfield of symbolic AI aimed to automatically learn declarative theories about the process of data. Learning from Interpretation Transition (LFIT) is an ILP technique that can learn a propositional logic theory equivalent to a given black-box system (under certain conditions). The present work takes a first step to a general methodology to incorporate accurate declarative explanations to classic machine learning by checking the viability of LFIT in a specific AI application scenario: fair recruitment based on an automatic tool generated with machine learning methods for ranking Curricula Vitae that incorporates soft biometric information (gender and ethnicity). We show the expressiveness of LFIT for this specific problem and propose a scheme that can be applicable to other domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源