论文标题

预测黑色Sigatoka感染风险具有潜在神经ODES

Forecasting Black Sigatoka Infection Risks with Latent Neural ODEs

论文作者

Wang, Yuchen, Chee, Matthieu Chan, Edher, Ziyad, Hoang, Minh Duc, Fujimori, Shion, Kathirgamanathan, Sornnujah, Bettencourt, Jesse

论文摘要

黑色西加托卡氏病严重减少了全球香蕉的产量,气候变化通过改变真菌物种分布来加剧问题。由于管理这种传染病的沉重负担,发展中国家的农民面临着大量的香蕉作物损失。尽管科学家已经产生了传染病的数学模型,但很难适应这些模型以纳入气候效应。我们出席先生。 Node(多个预测神经ode),一种神经网络,建模黑色Sigatoka感染的动力学,直接通过神经常规微分方程从数据中学到。我们的方法除了推断出的变量外,还将外部预测因子用于潜在空间,并且还可以预测任意时间点的感染风险。从经验上讲,我们在历史气候数据上证明了我们的方法在未来最多一个月的时间点具有出色的概括性能,并且不符合规范。我们认为,我们的方法可以是控制黑色Sigatoka传播的有用工具。

Black Sigatoka disease severely decreases global banana production, and climate change aggravates the problem by altering fungal species distributions. Due to the heavy financial burden of managing this infectious disease, farmers in developing countries face significant banana crop losses. Though scientists have produced mathematical models of infectious diseases, adapting these models to incorporate climate effects is difficult. We present MR. NODE (Multiple predictoR Neural ODE), a neural network that models the dynamics of black Sigatoka infection learnt directly from data via Neural Ordinary Differential Equations. Our method encodes external predictor factors into the latent space in addition to the variable that we infer, and it can also predict the infection risk at an arbitrary point in time. Empirically, we demonstrate on historical climate data that our method has superior generalization performance on time points up to one month in the future and unseen irregularities. We believe that our method can be a useful tool to control the spread of black Sigatoka.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源