论文标题
REMP:用于几次学习的整流度量传播
ReMP: Rectified Metric Propagation for Few-Shot Learning
论文作者
论文摘要
很少有学习的能力从几个示例中概括。在本文中,我们首先确定一个歧视性特征空间,即一个纠正的度量空间,该空间被学到了以维持从训练到测试的度量一致性,这是基于公制的少量学习的成功的重要组成部分。大量分析表明,对目标的简单修改可以带来可观的性能提高。所得的方法称为整流度量繁殖(REMP),进一步优化了一个细心的原型传播网络,并应用了排斥力来做出自信的预测。广泛的实验表明,所提出的REMP具有有效和有效的效率,并且在各种标准的少数学习数据集上表现出色。
Few-shot learning features the capability of generalizing from a few examples. In this paper, we first identify that a discriminative feature space, namely a rectified metric space, that is learned to maintain the metric consistency from training to testing, is an essential component to the success of metric-based few-shot learning. Numerous analyses indicate that a simple modification of the objective can yield substantial performance gains. The resulting approach, called rectified metric propagation (ReMP), further optimizes an attentive prototype propagation network, and applies a repulsive force to make confident predictions. Extensive experiments demonstrate that the proposed ReMP is effective and efficient, and outperforms the state of the arts on various standard few-shot learning datasets.