论文标题

Mauil:半监督用户身份链接的多层属性嵌入

MAUIL: Multi-level Attribute Embedding for Semi-supervised User Identity Linkage

论文作者

Chen, Baiyang, Chen, Xiaoliang

论文摘要

由于其重大的研究挑战和实践价值,社交网络的用户身份链接(UIL)最近引起了越来越多的关注。大多数现有方法都使用一种方法来表达不同类型的属性功能。但是,单纯形模式既不能覆盖整个不同属性功能,也不能捕获属性文本中的高级语义特征。本文建立了一个新颖的半佩斯特化模型,即半佩里的用户身份链接(Mauil)的多级属性嵌入,以寻求跨社交网络的共同用户身份。 Mauil包括两个组件:多级属性嵌入和基于正规的规范相关分析(RCCA)的线性投影。具体而言,每个网络的文本属性首先分为三种类型:字符级别,文字级别和主题级属性。其次,采用无监督的方法来提取相应的三种文本属性功能,用户关系被嵌入为免费功能。将所有结果功能组合在一起以形成每个用户的最终表示。最后,借助少数预先匹配的用户对,将目标社交网络投射到共同的相关空间中。我们通过在两个现实世界数据集上进行了广泛的实验来证明所提出的方法比最先进的方法的优越性。

User identity linkage (UIL) across social networks has recently attracted an increasing amount of attention due to its significant research challenges and practical value. Most of the existing methods use a single method to express different types of attribute features. However, the simplex pattern can neither cover the entire set of different attribute features nor capture the higher-level semantic features in the attribute text. This paper establishes a novel semisupervised model, namely the multilevel attribute embedding for semisupervised user identity linkage (MAUIL), to seek the common user identity across social networks. MAUIL includes two components: multilevel attribute embedding and regularized canonical correlation analysis (RCCA)-based linear projection. Specifically, the text attributes for each network are first divided into three types: character-level, word-level, and topic-level attributes. Second, unsupervised approaches are employed to extract the corresponding three types of text attribute features, and user relationships are embedded as a complimentary feature. All the resultant features are combined to form the final representation of each user. Finally, target social networks are projected into a common correlated space by RCCA with the help of a small number of prematched user pairs. We demonstrate the superiority of the proposed method over state-of-the-art methods through extensive experiments on two real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源