论文标题

树公制1-Spanner中的本地路由

Local Routing in a Tree Metric 1-Spanner

论文作者

Brankovic, Milutin, Gudmundsson, Joachim, van Renssen, André

论文摘要

所罗门和埃尔金(Elkin)为加权树构建了捷径方案,为输入树引起的树度量导致1跨度。扳手具有对数轻度,对数直径,线性的边缘和有界度(前提是输入树具有界限)。该扳手已在一系列论文中应用,用于设计有限的程度,低直径,低重量$(1+ε)$ - 欧几里得和双倍指标。在本文中,我们为该树度跨度提供了一种简单的本地路由算法。该算法的路由比为1,保证在$ O(\ log n)$ hops之后终止,并且需要$ o(δ\ log n)$存储,其中$δ$是构建跨度的树的最大程度。该本地路由算法可以适应使用捷径方案的双倍跨度的本地路由算法。

Solomon and Elkin constructed a shortcutting scheme for weighted trees which results in a 1-spanner for the tree metric induced by the input tree. The spanner has logarithmic lightness, logarithmic diameter, a linear number of edges and bounded degree (provided the input tree has bounded degree). This spanner has been applied in a series of papers devoted to designing bounded degree, low-diameter, low-weight $(1+ε)$-spanners in Euclidean and doubling metrics. In this paper, we present a simple local routing algorithm for this tree metric spanner. The algorithm has a routing ratio of 1, is guaranteed to terminate after $O(\log n)$ hops and requires $O(Δ\log n)$ bits of storage per vertex where $Δ$ is the maximum degree of the tree on which the spanner is constructed. This local routing algorithm can be adapted to a local routing algorithm for a doubling metric spanner which makes use of the shortcutting scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源