论文标题

高架通信上的毫米波通信:深钢筋学习基于预测光束跟踪

Millimeter Wave Communications on Overhead Messenger Wire: Deep Reinforcement Learning-Based Predictive Beam Tracking

论文作者

Koda, Yusuke, Shinzaki, Masao, Yamamoto, Koji, Nishio, Takayuki, Morikura, Masahiro, Shirato, Yushi, Uchida, Daisei, Kita, Naoki

论文摘要

本文讨论了放置在千米波(MMWave)节点上的动力学的光束跟踪的可行性,包括在头顶质量线上,包括风力扰动和由冲动力引起的电线引起的干扰。我们的主要贡献是回答MMWave节点的历史位置和速度是否有助于跟踪定向光束,鉴于复杂的线路动力学。为此,我们基于深度强化学习(DRL)实施横梁跟踪,以了解历史位置/速度和适当的光束转向角度之间的复杂关系。我们的数值评估产生了以下关键见解:针对风扰,可以从节点的历史位置和速度中学到适当的光束跟踪策略。同时,反对冲向导线的力量,由于节点的快速位移,该节点的位置和速度的使用不一定足够。为了解决这个问题,我们建议通过利用电线上几个点的位置/速度作为DRL中的状态信息来利用电线上的位置相互作用。结果证实,这会导致避免光束未对准,仅使用节点的位置/速度是不可能的。

This paper discusses the feasibility of beam tracking against dynamics in millimeter wave (mmWave) nodes placed on overhead messenger wires, including wind-forced perturbations and disturbances caused by impulsive forces to wires. Our main contribution is to answer whether or not historical positions and velocities of a mmWave node is useful to track directional beams given the complicated on-wire dynamics. To this end, we implement beam-tracking based on deep reinforcement learning (DRL) to learn the complicated relationships between the historical positions/velocities and appropriate beam steering angles. Our numerical evaluations yielded the following key insights: Against wind perturbations, an appropriate beam-tracking policy can be learned from the historical positions and velocities of a node. Meanwhile, against impulsive forces to the wire, the use of the position and velocity of the node is not necessarily sufficient owing to the rapid displacement of the node. To solve this, we propose to take advantage of the positional interaction on the wire by leveraging the positions/velocities of several points on the wire as state information in DRL. The results confirmed that this results in the avoidance of beam misalignment, which would not be possible by using only the position/velocity of the node.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源