论文标题

具有固定数量吊坠或切割顶点的图形的总偏心指数

Total eccentricity index of graphs with fixed number of pendant or cut vertices

论文作者

Pandey, Dinesh, Patra, Kamal Lochan

论文摘要

连接图的总偏心率指数定义为其所有顶点的偏心率的总和。我们用$ \ Mathfrak {h} _ {n,k} $表示$ n $顶点上的所有连接图表,并用$ n $ n $ VERTICES上的所有连接图表示,$ s $ s $ cut cut Tertices by $ \ mathfrak {在本文中,我们在$ \ mathfrak {h} _ {n,k} $上的总偏心索引上给出了尖锐的下限和上限,而在$ \ mathfrak {c_ {n,s}} $上的相同的敏锐下限。当$ s = 0,1,n-3,n-2 $时,我们还提供了超过$ \ mathfrak {c_ {n,s}} $的总偏心指数的尖锐上限

The total eccentricity index of a connected graph is defined as sum of the eccentricities of all its vertices. We denote the set of all connected graphs on $n$ vertices with $k$ pendant vertices by $\mathfrak{H}_{n,k}$ and denote the set of all connected graphs on $n$ vertices with $s$ cut vertices by $\mathfrak{C_{n,s}}$. In this paper, we give the sharp lower and upper bounds on the total eccentricity index over $\mathfrak{H}_{n,k}$ and the sharp lower bound for the same over $\mathfrak{C_{n,s}}$. We also provide the sharp upper bounds on the total eccentricity index over $\mathfrak{C_{n,s}}$ when $s=0,1,n-3,n-2$ and propose a problem regarding the upper bound over $\mathfrak{C_{n,s}}$ for $2\leq s\leq n-4.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源