论文标题

关于Bernoulli Percolation的一些关键阈值的注释

A note on some critical thresholds of Bernoulli percolation

论文作者

Tang, Pengfei

论文摘要

考虑在本地有限的,连接的图形$ g $上考虑Bernoulli债券渗透,让$ p _ {\ mathrm {cut}} $是对应于“第一矩方法”下限的阈值。 kahn(\ textIt {electron。\ comm。\ probab。\卷8,184-187。}(2003))构建了一个反例,以示例为$ p _ {\ mathrm {cut}} = p_c $的$ p _ {\ mathrm {cut}} = p_c $,并提出了修改。在这里,我们对卡恩的修改问题给出了积极的答案。关键观察结果是,在Kahn的修改中,新的期望数量也出现在单臂事件的差异不平等中。这将问题与Duminil-Copin and Tassion的引理联系起来(\ textit {Comm。Math。Math。Phys。Solume。343,725-745。}(2016))。我们还研究了一些在周期树上伯努利渗透的应用。

Consider Bernoulli bond percolation on a locally finite, connected graph $G$ and let $p_{\mathrm{cut}}$ be the threshold corresponding to a "first-moment method" lower bound. Kahn (\textit{Electron.\ Comm.\ Probab.\ Volume 8, 184-187.} (2003)) constructed a counter-example to Lyons' conjecture of $p_{\mathrm{cut}}=p_c$ and proposed a modification. Here we give a positive answer to Kahn's modified question. The key observation is that in Kahn's modification, the new expectation quantity also appears in the differential inequality of one-arm events. This links the question to a lemma of Duminil-Copin and Tassion (\textit{Comm. Math. Phys. Volume 343, 725-745.} (2016)). We also study some applications for Bernoulli percolation on periodic trees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源